11 research outputs found

    Uncertainty quantification for integrated circuits: Stochastic spectral methods

    Get PDF
    Due to significant manufacturing process variations, the performance of integrated circuits (ICs) has become increasingly uncertain. Such uncertainties must be carefully quantified with efficient stochastic circuit simulators. This paper discusses the recent advances of stochastic spectral circuit simulators based on generalized polynomial chaos (gPC). Such techniques can handle both Gaussian and non-Gaussian random parameters, showing remarkable speedup over Monte Carlo for circuits with a small or medium number of parameters. We focus on the recently developed stochastic testing and the application of conventional stochastic Galerkin and stochastic collocation schemes to nonlinear circuit problems. The uncertainty quantification algorithms for static, transient and periodic steady-state simulations are presented along with some practical simulation results. Some open problems in this field are discussed.MIT Masdar Program (196F/002/707/102f/70/9374

    MEMS Accelerometers

    Get PDF
    Micro-electro-mechanical system (MEMS) devices are widely used for inertia, pressure, and ultrasound sensing applications. Research on integrated MEMS technology has undergone extensive development driven by the requirements of a compact footprint, low cost, and increased functionality. Accelerometers are among the most widely used sensors implemented in MEMS technology. MEMS accelerometers are showing a growing presence in almost all industries ranging from automotive to medical. A traditional MEMS accelerometer employs a proof mass suspended to springs, which displaces in response to an external acceleration. A single proof mass can be used for one- or multi-axis sensing. A variety of transduction mechanisms have been used to detect the displacement. They include capacitive, piezoelectric, thermal, tunneling, and optical mechanisms. Capacitive accelerometers are widely used due to their DC measurement interface, thermal stability, reliability, and low cost. However, they are sensitive to electromagnetic field interferences and have poor performance for high-end applications (e.g., precise attitude control for the satellite). Over the past three decades, steady progress has been made in the area of optical accelerometers for high-performance and high-sensitivity applications but several challenges are still to be tackled by researchers and engineers to fully realize opto-mechanical accelerometers, such as chip-scale integration, scaling, low bandwidth, etc

    Monolithic Multi Degree of Freedom (MDoF) Capacitive MEMS Accelerometers

    No full text
    With the continuous advancements in microelectromechanical systems (MEMS) fabrication technology, inertial sensors like accelerometers and gyroscopes can be designed and manufactured with smaller footprint and lower power consumption. In the literature, there are several reported accelerometer designs based on MEMS technology and utilizing various transductions like capacitive, piezoelectric, optical, thermal, among several others. In particular, capacitive accelerometers are the most popular and highly researched due to several advantages like high sensitivity, low noise, low temperature sensitivity, linearity, and small footprint. Accelerometers can be designed to sense acceleration in all the three directions (X, Y, and Z-axis). Single-axis accelerometers are the most common and are often integrated orthogonally and combined as multiple-degree-of-freedom (MDoF) packages for sensing acceleration in the three directions. This type of MDoF increases the overall device footprint and cost. It also causes calibration errors and may require expensive compensations. Another type of MDoF accelerometers is based on monolithic integration and is proving to be effective in solving the footprint and calibration problems. There are mainly two classes of such monolithic MDoF accelerometers, depending on the number of proof masses used. The first class uses multiple proof masses with the main advantage being zero calibration issues. The second class uses a single proof mass, which results in compact device with a reduced noise floor. The latter class, however, suffers from high cross-axis sensitivity. It also requires very innovative layout designs, owing to the complicated mechanical structures and electrical contact placement. The performance complications due to nonlinearity, post fabrication process, and readout electronics affects both classes of accelerometers. In order to effectively compare them, we have used metrics such as sensitivity per unit area and noise-area product. This paper is devoted to an in-depth review of monolithic multi-axis capacitive MEMS accelerometers, including a detailed analysis of recent advancements aimed at solving their problems such as size, noise floor, cross-axis sensitivity, and process aware modeling

    Editorial for the Special Issue on MEMS Accelerometers

    No full text
    Micro-Electro-Mechanical Systems (MEMS) devices are widely used for motion, pressure, light, and ultrasound sensing applications [...

    Machine learning in VLSI computer-aided design

    No full text

    Dynamic Autoselection and Autotuning of Machine Learning Models for Cloud Network Analytics

    No full text
    corecore